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This is a study of how certain geometrical and flow parameters affect the tendency 
of a fluid to flow around rather than over a single obstacle of simple shape in a 
homogeneous non-rotating fluid. A series of numerical experiments was conducted 
with a finite-difference model of such a shallow flow, assuming a hydrostatic pressure 
distribution. The results demonstrate how the flow over a three-dimensional obstacle 
deviates from the patterns established for a two-dimensional ridge. Measures are 
suggested for quantitative assessment of the tendency to flow around as a function 
of relative hill height' and Froude number. 

A series of laboratory experiments was also performed, examining the motions of 
two superposed homogeneous layers of fluid past an isolated obstacle in a towing tank. 
The resulting motion of the interface was found to  agree with the results of the 
numerical experiments. The laboratory experiments also extended the understanding 
gained from the numerical experiments. Flow-visualization techniques were employed 
to aid in the qualitative assessment of the flow around the obstacles and its 
dependence on hill and flow parameters. In  particular, these techniques demonstrated 
the impingement of the interface on the obstacle, and its dependence on flow speed 
and hill height. 

1. Introduction 
The determination of flow patterns over and around obstacles is a problem of great 

current interest. One important application is that of the prediction of surface 
concentrations due to pollutant plumes in complex terrain. In  this problem, for a 
stably stratified atmosphere, where the boundary layer is very shallow and the plume 
is above the boundary layer, the flow governing the plume motion can be considered 
inviscid, affected by the terrain only through the deformation of the lower boundary. 
In  this and other examples, the final goal is one of predicting stably stratified flow 
with wind shear over complex terrain. The present study represents a first step toward 
this goal by confirming and extending our knowledge of a homogeneous atmosphere 
with constant mean wind over an isolated obstacle. 

Often, topographic features of a height large enough to protrude through the 
boundary layer are of a horizontal scale large enough that the hydrostatic approxi- 
mation can be justified for the topographically induced motions. The numerical 
experiments presented here concentrate on such hydrostatic motions in a single layer 
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FIGURE 1. Diagram showing notation for one- and two-layer model. 

of non-rotating homogeneous incompressible fluid with a free surface. governed by 
the following equations : 

av av av a 
at ax ay 

ah a a 
-+-(hu)+-(hv) = 0, 
at ax a Y  

-+u--+w- == - g q  (h  + h,)> 

where u, v are the velocity components in the x-. y-directions respectively, h is the 
fluid depth, and the bottom topography is defined by h,(x, y) ,  as shown in the lower 
layer of figure 1. This model is a useful one for, although highly simplified, the 
nonlinear effect in the advective terms is retained. For several special cases, the 
equations yield analytic solutions that can act as guides. I n  addition, since the 
motion is independent of the height coordinate, a finite-difference model for the 
equations can be integrated in time rather easily to obtain solutions in more general 
cams. 

Previous numerical studies have concentrated, for the most part, on the case with 
no cross-stream dependence. The analysis of the possibly steady solutions of (1) for 
a two-dimensional obstaclc and flow is now well known (see c.g. Long 1972; Baines 
& Davies 1980). Briefly, for steady flow over a ridge (1  a-c) become 

a 
-~~u"g(h+h,)] = 0, ax 

a 
-(hu) = 0, 
ax 

so that both the quantity :u2+g(h+ h,) and the mass flux Q = hu must be constant 
throughout the fluid, fixed by the initial values h,, ZL,. If the specific cnergy e is defined 
as the sum of kinetic and potential energy per unit mass, 

U2 Q Z  
e EG -+h = - - + I & ,  

2g 2gh2 
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Supercritical flow I Partially blocked, no lee jump 

Subcritical flow 

, Complete blocking 

FIGURE 2.  Curve FAB defined by condition that F = 1 a t  crest of ridge obstacle, differentiating 
regions where continuous steady-state solutions can exist (from Baines & Davies 1980). 

then (2a)  gives 

so the flow loses and then gains specific energy as it moves up the obstacle and then 
down the lee side. It can be shown from (3) that  for given Q a critical value of e is 
attained where h = u2/g, called the critical depth ; depths less than and greater than 
this are termed supercritical and subcritical respectively. If the maximum value, h,, 
of h, is large enough that, according to (4), the specific energy must drop below the 
critical value as it passes over the obstacle, it  is concluded that no steady solution 
exists for such h, and Q .  The critical solutions are thus defined by the curve derived 
from (2a) representing values of u,, ha and h, where u2 = gh a t  the crest of the hill: 

q - 327: = 2(h* - l) ,  (5)  

where 4 = uo/(gh,)b, the Froude number of the initial state, and h* E h,/h,. The 
curve of Fa versus h* given by (5) is shown in figure 2 as FAB (figure from Baines 
& Davies 1980). 

The possible configurations of surface height for the regimes shown in figurc 2 
were derived as solutions of steady equations. That these solutions correspond to 
long-term solutions of the time-dependent equations has been verified in a few cases 
with numerical models (Houghton & Kasahara 1968; Larsen 1966) and with flow-tank 
experiments (Long 1954). Thus, for the two-dimensional case, the flow pattern can 
be considered to be determined by the two dimensionless parameters Fa and h*. 

If a three-dimensional obstacle is substituted for the ridge, the following form of 
the momentum equation (1) for steady flow applies: 

( V H x u H ) x ~ , + V , [ $ ~ & + g ( h + h , ) ]  = 0. (6) 

$u&+g(h+h,) = E,, (7)  

Along each streamline we can write 

where E, is a constant specified in the absence of a disturbance, and from this we 
define the two-dimensional Froude number 

F = (3)'. 
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FIGURE 3. Curve defined by condition that F = 1 at  crest of ridge obstacle for different values of 
r ,  relative depth of lower layer (from Baines & Davies 1980). 

If F = 1 a t  the crest again defines critical flow, a curve analogous to that of figure 2 
should exist. An analytic expression for such a critical curve is not available, but 
it should be possible to determine the curve through numerical experiments in which 
finite-difference analogues of (1) are integrated to an asymptotic state. At present, 
however, non-rotating shallow flow over and around three-dimensional obstacles has 
been studied through initial-value experiments only minimally. On the basis of a 
repetition of Houghton & Kasahara’s (1968) four numerical experiments, but with 
a bell-shaped obstacle instead of a ridge, Oobayashi (1970) suggested that the curve 
FAB shown in figure 2 separates the steady from non-steady regimes in the 
three-dimensional case as well. A more thorough and systematic examination of this 
question is attempted here. 

The present numerical experiments investigate the dependence of the critical curve 
separatii5g the region of non-steady from steady flow on the cross-stream obstacle 
width. As the interest here is with atmospheric applications, the experiments 
concentrate on the parameter range Fo < 1. The results of these experiments are 
presented in $2, and quantitative measures to represent the magnitude of flow over 
versus flow around for steady flows are suggested. 

Laboratory experiments were conducted in the Environmental Protection Agency 
Fluid Modeling Facility flow tank to corroborate and extend the results of the 
numerical model. The flow-tank experiments investigated the flow oftwo homogeneous 
hydrostatic superposed layers of fluid past an isolated obstacle, as shown in figure 1 
(the diagram must be inverted to correspond to the flow-tank configuration). The 
analysis of the two-dimensional steady case for two finite-depth layers has been 
presented by Long (1972) and reviewed by Baines & Davies (1980). Additional 
parameters must be defined: r = ho/(ho+h,) and g‘ = g(po-pl ) /po.  The modification 
of the critical curve FAB in figure 2 by the presence of the finite-depth upper layer 
is presented in figure 3, taken from Baines & Davies (1980), where Fa is the initial 
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Froude number of the lower layer. As r+O the single-layer solution to (1) is 
approached, with g’ replacing g. For r < 0.5 and F, < 1 .O the qualitative description 
of the regimes on either side of the appropriate critical curve of figure 3 is essentially 
unchanged. 

The flow-tank experiments that extend this analysis to the case of a three- 
dimensional obstacle are presented in $3.  The experiments correspond to values of 
r = 0.125, 0.25, 0.37, and h*=0.667, 1.0, 2.0. These r-values are small enough that 
for simplicity only the r = 0 curve will be presented with the plotted results, with 
little lass of accuracy. 

The equation for the line BC in figure 2 is, from Houghton & Kasahara (1968), 

F, = - - - [ h * ] ’ .  h*-1 1+h* 
h* (9 )  

The region below this curve, with h* 3 1.0 and small 8 corresponds, in the 
two-dimensional case, to complete blocking. With a three-dimensional obstacle, the 
flow can go around, and the criterion (9) is no longer appropriate. A steady solution 
may exist with the velocity vanishing only on the centreline y = 0, where the interface 
impinges on the obstacle. If the interface impinges just a t  the crest of the hill, then 
(2a)  gives 

that is, a tentative criterion for impingement could be taken as 

< 2(h*- 1). (10) 

Curves from (9) and (10) will be plotted for comparison with data from the laboratory 
experiments in $3. 

2. The numerical experiments 
2.1. Formulation and testing 

The arrangement of variables shown in figure 4 has been shown to give the most 
accurate phase speed for linear gravity waves (Arakawa & Lamb 1977) and will be 
used in the present model. Conservation of momentum and energy are of primary 
importance in the present problem, making it desirable to use a scheme that main- 
tains finite-difference analogues of the equations for the conservation of total 
energy and u-momentum. If the most natural form is chosen for the finite-difference 
analogue of (1 c ) ,  then the simplest such scheme for (1 a, b )  of second-order accuracy 
that can be derived for the chosen grid is given as follows, with the time derivative 
left in continuous form at this point: 
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FIGURE 4. Staggered giid used in the numerical model. 

(With this scheme u-momentum is nearly conserved throughout the experiments, 
although there is a formal guarantee only for the case of no topography.) 

Leapfrog time differencing was used - a second-order-accurate scheme that is 
conditionally stable and neutral when applied to  the linearized gravity-wave 
equation with advection : 

(12) 

A forward step was inserted periodically to suppress the weak instability that arises 
with the use of a three-level scheme in nonlinear equations (Lilly 1965). It was 
necessary to use a At that  easily satisfied the criterion for linear computational 
stability for a two-dimensional grid 

tn+l--["-' = 2 A t f " ( ~ ,  V ,  h). 

(13) 
At 
Ax d2 (u, + (gh& - < 1.  

With a neutral time-differencing scheme, solutions with discontinuities cannot be 
maintained for long times, as they continue to  steepen until the integration fails. In  
a real fluid, a jump is associated with energy loss through turbulent mixing, and can 
be maintained with a finite amplitude (Long 1954). The use of a dissipative scheme 
would damp the numerical oscillations near a jump, but could also influence the jump 
formation and thus obscure a main point of investigation. 

The difference scheme was tested for the case of a y-independent wave progressing 
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down a flat-bottomed channel into still fluid. The time and position a t  which the wave 
will steepen and approach a breaking point can be calculated from (1) and depend 
on amplitude, frequency and equilibrium water depth (Stoker 1957, p. 356). For a 
wide range of parameters, the model predicted the correct position and time with good 
accuracy. 

All of the obstacle shapes considered had a triangular cross-section in the 
(x, 2)-plane, with base half-length 1,. A smoother shape with no discontinuity of slope 
would tend to minimize separation effects in a real fluid, and thus make the 
comparison between results of laboratory experiments and those of an inviscid 
numerical model more valid, especially in the lee. However, to study the dependence 
of the flow on the obstacle shape and size, i t  was advantageous to characterize the 
geometry in the fewest number of parameters. The linear slope has an additional 
advantage in that no truncation error arises in the finite-differencing from the 
pressure-gradient term Ahs. 

For the numerical experiments, three obstacle base half-widths I, were considered. 
The ridge was used for comparison with analytical solutions as well as previous 
numerical studies. The cone, with I, = l,, corresponded to the obstacle used in the 
laboratory flow tank. The truncated ridge, a cone sliced in half through the centre 
with a ridge inserted between the halves, was included to clarify the transition 
between two-and three-dimensional flows. 

The channel extended in x from - L, to + L,, where a cyclic boundary condition 
was assumed. The channel was made long enough so that, during the time period of 
interest, the motion was steady near the obstacle before the downstream field could 
affect the upstream motion. Sidewalls were assumed a t  the lateral boundaries 

For the cases with three-dimensional topography it  was desired to choose the 
channel width large enough that the side boundary conditions did not significantly 
affect the flow in the vicinity of the obstacle. By repeating many experiments, varying 
only the width of the channel, i t  was found that with Lull, 2 2 the velocities a t  (0, Z,) 
differed by only a few percent. 

To facilitate comparison with the laboratory experiments, relative channel and 
obstacle dimensions were fixed so as to correspond to those of the flow tank to be 
discussed in $3. For a gridlength Ax = Ay = As, the cone was of radius 5As and the 
truncated ridge of half-widths 1, = 5As, 1, = 96s. The channel was of length 250As, 
depth 2.5As and cross-sectional half-width 126s for the cone and 22As for the 
truncated ridge. Thus the ratio h,/21, relevant to the validity of the hydrostatic 
approximation was 0.25 in both laboratory and numerical experiments. 

To fix the gridlength, a set of experiments was repeated varying only the resolution, 
with from 5-40 points defining the conical obstacle. The results differed only in the 
amplitude of small-scale noise generated near the obstacle. The chosen spacing, with 
averaging of the final fields over 25 time steps, produced results as smooth as the finest 
resolution with no change in the critical values. 

The initial conditions were an undisturbed free surface of height h, and a constant 
zonal velocity u,. For st specified topography, (11)  and (12) were integrated in time 
until the solution in the vicinity of the obstacle became steady or a jump formed, 
indicating that the solution was in the nonsteady region of figure 2. The regime of 
the asymptotic state was determined by the following criteria : 

(a )  subcritical if F increases with increasing x to a maximum value less than one 
at the crest, then decreases in the lee; 

( b )  a jump regime if F increases over the crest, passes through a value close to one 
at the crest to  a relative maximum in the lee, and then jumps to the initial F, value. 

y = *Ly. 
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FIQURE 5.  Normalized surface height for ridge case with h* = 0.5: (a) Fo = 0.2; (6) F, = 0.3. 

Test experiments similar to those of Houghton & Kasahara (1968) were performed : 
two time integrations of the model using the ridge obstacle, with an obstacle height 
h* = 0.5 and Fo = 0.2,0.3,  which should be in different regimes according to figure 2 .  
The normalized surface heights (h  + h,)/ho shown in figures 5 (a, b )  correspond to 
3.0 s or 600 time steps for the F, = 0.2 case and 2.4 s for the & = 0.3 case (fields 
here and in all figures from numerical experiments are averaged over the final 25 time 
steps to smooth small-scale noise). Comparison with the analytically proposed 
solutions of figure 2 shows that the predicted features in these two-dimensional cases 
are well represented. 

2 -2. Results 
An experimental curve analogous to FAB in figure 2 was constructed for the case 
of the ridge obstacle, i.e. repeated time integrations were carried out to  locate 
approximate values of h* and l$ on the critical curve. Experiments were conducted 
for ridge heights h* = 0.2, 0.5 and 0.8. The approximate critical curve is shown 
(dashed) in figure 6, with the lower branch of FAB from figure 2 given (solid) for 
comparison. The difference between the two curves is very small and can be 
attributed to the truncation error incurred by the use of finite-difference 
approximations. 

A second set of experiments was then performed for the case of the truncated ridge, 
in which the flow is no longer two-dimensional. As an example, figures 7 (a-c) show 
the steady flow pattern for the case h* = 0.5, F, = 0.3, a t  t = 3.0 s. Figure 7 (a)  shows 
streamlines of the flow field and figures 7 ( b , c )  present contour maps of the non- 
dimensional surface-height perturbation and local Froude number respectively. 
The flow is just critical a t  the obstacle crest along the y = 0 line, while the flow 
around the sides of the obstacle remains subcritical. 

Experiments with the truncated ridge for h* = 0.2,0.5,0.8 were used to determine 
the transition curve shown dash-dotted in figure 6. The transition line from 
subcritical flow to flow with a jump in the lee has clearly shifted; for a given flow 
speed a higher obstacle is required to produce a jump along the centreline. 
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FIGURE 6. The critical curves as determined by numerical experiments for (a) ridge (dashed); ( b )  
truncated ridge (dash-dotted) ; (c) conical obstacle (dotted); (d )  analytical curve from ( 5 )  (solid). 

The largest set of experiments was performed for the case of a conical obstacle; 
the (F,, h*) pairs examined are indicated in figure 8 ( c ) .  The effect of increased 
three-dimensionality is seen in the steady flow results for the case h* = 0.5, F, = 0.3 
a t  t = 3.0 s shown in figures 8(a ,  b ) ;  the flow regime in this case is subcritical 
everywhere. The experimentally determined transition line is shown (dotted) in 
figure 6. 

The streamline maps of figures 7 (a) ,  8 (a)  and the shifted transition line of figure 
6 provide qualitative evidence of the deviation of the flow around a three-dimensional 
obstacle, but a quantitative measure is still lacking. Two different measures are 
proposed here and applied to the data from the experiments with the conical obstacle. 
For the present case of homogeneous nonrotating fluid the magnitude of variation 
of flow around is not large, but the usefulness of the proposed measures can be 
tentatively evaluated. 

The first measure utilizes the mass flux hu, which for the two-dimensional steady 
case is constant in x and equal to the initial upstream value h,u,. With y-dependence, 
the divergence of meridional mass flux, ahv/ay, can change this value. The profile in 
y through the centre of the conical obstacle (along the x = 0 line) of hu/h,u, for the 
sample case h* = 0.5, F, = 0.3 is shown in figure 9(a ) .  Note that there is little 
deviation from the undisturbed value a t  the edges of the channel. A single number 
can be extracted from each such curve by considering the normalized integral of 
values over the obstacle : 

Values of this measure range between 0, for the case with all flow over the obstacle, 
and 1, for all flow around. A value of m, was calculated from the asymptotic flow 
pattern of each integration classified as a subcritical case. Figure 9 ( b )  shows contours 
of the measure ml; the values increase most rapidly with increasing h*. 

A second measure of the dependence of flow around on h* and F, is derived by 
graphical determination of the velocity tangent line just touching the obstacle. The 
distance d of the upstream position of this streamline from the y = 0 line (see 
figure 1Oa) can be taken as a measure of the flow deflection. When normalized 
by the obstacle half-width I,, the measure 

d 
m2 = 1-- 

1, 
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FIGURE 7 .  Steady flow for the truncated ridge with h* = 0.5, F, = 0.30: (a )  streamline map; ( b )  
surface-height perturbation contours; ( c )  contours of local Froudr number. 
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takes values between 0, when there is no deflection, and 1 ,  in the limiting case that 
the flow on the centreline just passes around the obstacle. Contours of m2 for the 
experiments with the conical obstacle in the subcritical region are presented in 
figure 10 ( b )  ; the values increase with increasing F, and h*. 

3. The laboratory experiments 
3.1. Apparatus and techniques 

All of the experiments were performed in the large towing tank of the U.S. 
Environmental Protection Agency Fluid Modeling Facility. The towing tank and 
associated equipment is described in detail in Hunt & Snyder (1980). The towing tank 
is 1.2 m deep, 2.4 m wide and 25 m long, has an aluminium framework and is lined 
with acrylic plastic. The tank may be filled with an arbitrary stable density 
stratification using salt water (specific gravity 1.0-1.2). A towing carriage may be 
pulled along the tank at  uniform speeds of 5-50 cm s-l. 

For the present experiments sufficient fresh water or salt water of low specific 
gravity was fed into the channel to  give the desired upper-layer depth h, (see figure 
1, inverted). A lower layer h, of greater specific gravity was then slowly introduced 
from the bottom of the tank. The entire filling operation requires about 66 m3 of water 
and takes approximately 4 h. 

Density profiles were obtained by drawing samples over the depth of the tank a t  
one or two centimetre intervals. The specific gravity of the sample was determined 
with an electronic balance (Mettler balance PS 200). The estimated error in the 
specific-gravity determination was 0.0005 random and + 0.0005 systematic. Two 
different density ratios were used to obtain a wide range of the independent variables. 
The nominal density differences were (p l -po) /po  = 0.02 and 0.20. 

Mechanical mixing during filling and molecular diffusion during filling and 
operation resulted in a minimum obtainable interface thickness of about 3 cm. After 
the day's experiments the interface thickness often increased to 5-6 em. The sharper 
interface was reestablished overnight by selective withdrawal of the fluid near the 
interface, at approximately 0.2-0.4 m3/h, and replacement by denser fluid a t  the 
bottom and lighter fluid a t  the top a t  the appropriate rates. A change in interface 
position was obtained by introducing denser fluid a t  the bottom of the tank and 
skimming lighter fluid from the top. 

The model hill was conical in shape, vacuum moulded from 6 mm acrylic plastic. 
The hill was mounted in a base plate of acrylic plastic attached to a framework of 
rectangular aluminium tubing. The base plate was immersed approximately 0.5 cm 
into the water and the hill towed upside down. The aluminium tubing supporting 
the baseplate was suspended from the towing carriage through four jackscrews, 
which permitted levelling of the baseplate. The baseplate had a 45' bevelled upstream 
edge. 

The height h, of the top of the conical hi11 from the baseplate was 23.4 cm, the 
included angle of the cone was 127O, and the distance 21, across the base of the hill 
was 93.6 cm. The total depth H of the two layers was fixed a t  108 cm. The height 
of the interface from the obstacle base was then varied such that for the sets of 
experiments reported here h* 5 h,/ho = 0.67, 1.0, 2.0. 

The experimental results obtained in this study were documented by several means 
of flow visualization. Shadowgraphs were obtained on a translucent plexiglass sheet 
on the side of the towing tank. Another method of flow visualization was that of 
photographing the plumes resulting from point sources of dye released from various 
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FIGURE S(u-c). For caption see facing page. 
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FIGURE 8. Steady flow for the conical obstacle with h* = 0.5, E’, = 0.30: (a)  streamline map; ( b )  
surface-height perturbation contours; (c) contours of local Froude number; (d )  experiments to define 
critical curve (0, subcritical ; x , non-steady). 
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FIGURE 9. ( a )  Plot of normalized momentum flux hu/h,u, as a function of y along x = 0 for the 
case of the conical obstacle, h* = 0.5, F, = 0.30. ( b )  Contours of m, for conical-obstacle experiments 
with flow in subcritical region. 

upstream positions. Care was taken to ensure that the dye, Warner Jenkinson no. 
393 blue food dye, was released a t  the specific gravity of the ambient fluid. Releases 
a t  local fluid velocity (isokinetic) were attempted, although this was not essential for 
the visualization studies. Side and top views were obtained with a 35 mm camera. 
Experiments were made with vertical and horizontal rakes of sources of internal 
diameter either 0.8 mm or 1.6 mm. The vertical rake had 1 1  sources a t  2 cm spacing, 
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(b) 
FIGURE 10. (a )  Diagram showing definition of the length d used in m2. ( b )  Contours of m2 for conical 

obstacle experiments with flow in subcritical region. 

with the source nearest the base being 2 cm off the base. Two horizontal rakes were 
used, each with 5 sources. The first of these rakes had sources located at y = - 5.5 cm, 
0 ,  + 5 . 5  em, + 11 cm, and + 16.5 cm, where y = 0 is directly upstream of the centre 
of the hill. The other rake had sources located a t  y = -5.5 cm, 0, 11.5 cm, 25 cm and 
45 em. The technique used is considered in more detail in Hunt & Snyder (1980). In  
some experiments dye was placed at the interface to  indicate the interface movc- 
ment more clearly. 

I n  most of the sets of experiments a density difference of A p / p  x 0.02 was used. 
In the few sets for which A p / p  x 0.2, the larger density difference led to  difficulties 
in interpreting and recording the flow-visualization studies, for example causing 
unusual refractive effects in some of the side-view photographs. When these 
experiments were rerun to obtain shadowgraphs, a density difference Aplp of 
approximately 0.02 was used and the results were in all cases in good agreement with 
the earlier experiments. 

3.2. Results 

An initial set of experiments was performed for h* = 0.67 to check the validity of 
the shallow-water assumption that an initially vertical column of fluid remains 
vertical (av,/az = 0). Estimates of the change of flow direction in the vertical were 
made by releasing dye from a vertical rake with eleven sources, offset from the 
centreline by 15.5 cm. Such experiments were conducted for the range of Froude 
numbers to be examined in the present study, and for all cases the plumes had a very 
limited lateral spread as shown, for example, in figure 11 for h* = 0.67 and F, = 0.41. 
Estimation of change of velocity magnitude with height is not documented here, for 
discrepancies in the rate and time of initial dye release made i t  difficult to  judge the 
shear of the flow. Another attempt utilized a discontinuous release, but the results 
were difficult to  quantify. However, the observations did not contradict the assump- 
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FIGURE 11 .  Top-view photograph showing lack of plume spread; h* = 0.67, Fo = 0.41. 

tion of an essentially uniform velocity in the vertical outside a surface boundary 
layer of a few centimetres. 

Another point to be discussed before comparisons between laboratory fluid flow 
and the results of the numerical model can be made is that  of flow separation. At 
the Reynolds numbers used in this study, 1.5 x lo4 Q uoh,/v < 1.0 x lo5, and with 
the conical obstacle, i t  was anticipated and observed that the flow would, in general, 
separate from the surface of the hill, giving rise to a region of recirculating flow in 
the lee. Further downstream there is usually found a region of decreased mean 
velocity and increased velocity fluctuations - the turbulent wake. The perturbations 
decrease in strength with increasing distance from the obstacle, while the dimensions 
of the wake grow. The nature and geometry of the flow separation and wake are of 
some consequence for air-pollution studies; however, they are of interest here only 
insofar as they may affect the approach flow and nature of the regime over the 
obstacle. It will be shown that for cases with similar h* and Fo the flow pattern 
upstream and over the obstacle produced in the laboratory fluid corresponds to  
that predicted by the inviscid numerical model. 

The Fo and h* values investigated through laboratory experiments are indicated 
in figure 12. The figure characterizes the flow regime by interface shape for the three 
sets of laboratory experiments (h* = 0.67, 1.0, 2.0). Those cases for which the inter- 
face either remained horizontal or had a slight depression over the crest are indicated 
by open circles. The cases in which the interface swelled over the crest are shown as 
small squares. The cases where strong downslope flow was observed in the lee are 
indicated with crosses. I n  these cases the flow rises to  its downstream level through 
a hydraulic jump or through an undular jump. Those cases where the interface 
impinges on the hill rather than rises over the crest are shown as closed circles. 
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h* 
FIGURE 12. Classification of laboratory experiments into flow regimes : 0, interface is horizontal 
and depressed a t  crest; , interface impinges on obstacle ; 0, interface rises over crest ; x , strong 
downslope flow in the lee; - - -, (9) ; ---, (10). 

The cases with h* = 0.67 and F, < 0.6, two shadowgraphs of which are shown as 
figure 13, tend to corroborate the results of the numerical model as to the shift of 
transition curve and effect of Froude number on the flow regime. For F, < 0.33 (see 
figure 13a) the interface is nearly horizontal, although there is a slight depression and 
recovery of the interface near the crest a t  the channel centre. The mixing at the 
interface is probably a result of the flow separation and small instabilities on the 
interface. For F, z 0.4-0.6 (see figure 136) the interface a t  the channel centre was 
bent down parallel to  the lee face of the hill for about half the length of that  face 
before rising to  overshoot its equilibrium position. This resulted in separation being 
inhibited a t  the crest, occurring well down the back of the hill. The lee jumps observed 
in the flow tank experiments are less steep than those in the numerical experiments, 
for those in the laboratory fluid are dissipated by turbulence and mixing. At Froude 
numbers I$ 3 0.33 there are waves on the interface in the lee of the hill. The waves 
have a maximum amplitude of approximately 25 em and a wavelength that increases 
with Froude number, from about 0.67 m at F, = 0.33, 1.5 m at 4 = 0.49 to 
approximately 4 m a t  F, = 0.61. For F, > 1.0 the interface rises slightly over the 
crest and then descends to  its original level in the lee. The flow separation again 
occurs a t  the crest but the vertical wake growth is decreased to become more 
nearly horizontal (at least close to  the hill). 

Streamline patterns were obtained for comparison with those from the numerical 
model using the horizontal rake described in 33.1. The rake was set at half the hill 
height (11.7 em) and vertical photographs taken. The plume paths for F, = 0.16 are 
shown in figure 14; the plume paths for F, = 0.33 were not significantly different, and 
figure 14 may be compared with the numerical-model result in figure 8(a).  While the 
two streamline patterns are similar, there is more deflection of the streamlines in the 
laboratory study. The measure m2 was estimated a t  0.18 for F, = 0.16 and 0.33, 
whereas the numerical results (figure 10 6 )  suggest values of 0.06 and 0.10 respectively. 
The large value of m, for the laboratory experiments is undoubtedly a result of flow 
separation and consequently larger effective obstacle size. 
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(b  ) 

FIGURE 13. Shadowgraphs for the case h* = 0.67: (a )  Fo = 0.25; ( b )  Fo = 0.41. 
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FIGURE 14. Plume-trajectory photographs, top view; h* = 0.67, F, = 0.16. 

An attempt was made to  obtain estimates of the mass flux hu a t  the obstacle crest 
for comparison with results used in calculating m, for the numerical model. Estimates 
of the depth h, of the flow above the crest of the hill were made by visual 
observation; estimates of the velocity u, of the flow there were made with a small 
propeller anemometer mounted with the propeller centre set two centimetres above 
the hill crest,. The resulting estimates of hcu,/hOuo are plotted against Fo with those 
from the numerical model in figure 15. The differences between the numerical and 
experimentally derived data can perhaps be explained through the presence of 
separation in the laboratory experiments. 

The second set of experiments, with h* = 1.0 and the undisturbed interface level 
with the crest of the obstacle, is an extension beyond the range of the numerical model. 
Experiments with a vertical rake showed that for F, = 0.1 the interface remains 
horizontal, impinges on the obstacle and all plumes separate to go around the crest 
(see figure 16). At 4 = 0.4 the interface just clears the crest and is drawn down in 
the lee in a weak hydraulic jump. Lower plumes again impinge on the upstream slope. 
At F, = 0.5 (see figure 17) there is a small rise in the interface just before the crest 
and then a strong drawdown in the lee, the interface nearing the base of the hill 
before a strong hydraulic jump. The plumes all clear the crest, but note how close 
all the plumes come to the lee surface of the hill. There are no large-amplitude waves 
in the lee. With Froude numbers of 0.6 and 0.7, there is a distinct drawdown of the 
interface a t  and beyond the crest, nearly reaching the hill base. The interface then 
rises back to the level of the undisturbed interface with no obvious jump but with 
strong wave motion in the lee. A long wave of elevation travels upstream. At 
Fo = 1 .O there is no obvious upstream influence except that  the interface rises slightly 
just ahead of the crest of the hill before descending in the lee. The descent in the lee 
is not as close to the lee face as for F, = 0.6 and 0.7. There are still waves in the far 
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FIGURE 15. Comparison of normalized mass flux at crest of obstacle: laboratory data with 

h* = 0.67 (0); numerical-model data with h* = 0.6 (0 )  and h* = 0.7 ( x ). 

FIGURE 16. Top-view photograph of vertical-rake plume release for the case h* = 1.0, Po = 0.1. 
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FIGURE 17. Side-view photograph of vertical-rake plume release for the case h* = 1.0, Po = 0.5. 

lee of the hill. At F, = 2.0 the interface rises symmetrically over the obstacle with 
little wave motion in the lee. There is mixing a t  the interface caused by the velocity 
field in the separated region. 

I n  figure 12 the curve from (9) defining the ‘total-blocking’ regime in the 
two-dimensional case is shown dotted and the proposed criterion (10) for interface 
impingement is shown dashed. For the experiments with h* = 2.0 no lower-layer 
flow passes over the crest for the lower Froude numbers, as expected from (10). For 
F, = 0.14 the interface is little disturbed upstream or downstream as it passes around 
the hill. With F, = 0.28 the interface rises slightly as the flow stagnates on the 
upstream face of the hill, and then descends below its upstream level as it passes 
around the side of the hill. There is turbulence and mixing in the lee of the hill, with 
the interface returning to  near its upstream level. Such flow is important for 
air-pollution studies, as a pollutant may be advected onto the hill side rather than 
diffuse to it, allowing surface concentrations nearly equal to the maximum 
concentration in the plume. For further discussion of this point see Snyder, Britter 
& Hunt (1979). At Froude numbers of 0.57-0.85, a long wave of elevation travels 
upstream ahead of the hill. As the Froude number increases there is also a more 
distinct rise of the interface as the flow stagnates, and an associated lowering of the 
interface near the hill as the flow travels around the side of the obstacle. The 
turbulence and mixing in the near lee give way to small-amplitude waves in the far 
lee. At a Froude number of 1.4 there is little discernible upstream influence. The 
interface rises over the crest of the hill and then descends in the lee, parallel to  the 
lee face, to  nearly reach the base. There is no separation on the lee face of the hill, 
and the interface rises slowly in the far lee to  its upstream level. At a Froude number 
of 2.8 (not shown on graph) the interface rises symmetrically over the obstacle to 
clear the crest and then returns to  its upstream level in the lee. Thus (10) is in 
agreement with the limited data available. 

Experiments for the case h* = 2.0 with the vertical rake located on the y = 0 line 
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(b  ) 

FIGURE 18. Top-view photographs of horizontal-rake plume release for the case h* = 2.0: 
(a )  F, = 0.71 ; ( b )  Fo = 1.4. Rake is at half the interface height. 
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clearly demonstrated plume impingement on the obstacle. At F, < 0.85 all the 
lower-layer plumes impinge on the hill surface and bifurcate, while upper-layer 
plumes clear the crest. All the plumes clear the crest of the hill at F, = 1.41. 
Experiments for h* = 2.0 were also repeated with a horizontal rake a t  an elevat,ion 
of half the interface height. The results (see figures 16a,b) clearly show plume 
impingement on the hill at low Froude numbers and the plumes rising over the crest 
at large Froude numbers. 

4. Conclusions 
A numerical model of the shallow-water equations was used to demonstrate that  

the three-dimensionality of an  obstacle and resultant flow around causes a shift of 
the analytically derived curve separating steady subcritical from critical flow for a 
two-dimensional ridge. This effect is predictably enhanced as the cross-stream 
obstacle width is decreased, but the criterion for change of regime retains its 
dependence on the two parameters 4 and h*. Of the two measures suggested for 
quantitatively describing the relative deflection, the first, based on the cross-sectional 
mass-flux distribution, is the more precise, but based on information not readily 
available in laboratory or field experiments. The second measure, based on a graphical 
determination of deflection of streamlines, is less rigorous but more readily adaptable 
to atmospheric data. 

The laboratory experiments have demonstrated that the flow regimes predicted 
by the numerical solutions of the time-dependent model for a three-dimensional 
obstacle correspond well qualitatively with those that occur in a real fluid, although 
the phenomenon of separation and wave effects in the lee introduce important 
differences. For values of h* 2 1 the occurrence of interface impingement was 
demonstrated to occur for values of F, less than that predicted by a criterion derived 
through consideration of the kinetic energy of the initial flow. 
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